June 26, 2024

Fernside Boulevard Traffic Calming & Bikeways Project

Transportation Commission

About the project

1.3 Mile Corridor Project

Project subsets:

Design concept for full corridor

 Near-term upgrade with resurfacing west of High St

Project Phases

- Public outreach for existing conditions & initial input: November 2023 -January 2024
- 2. Public outreach for draft concept alternatives: May-June 2024
- 3. Public hearings for final design concept: Fall/Winter 2024 Transportation Commission and City Council public hearings (including seeking City Council approval)
- 4. Resurfacing and restriping on Fernside Blvd west of High St: 2025 or 2026
- 5. Construct full corridor project: 2030 goal timing depends on finding funding

Why are we here?

Project goal: reduce traffic speeds and improve safety and mobility for all

- Coordinate with pavement resurfacing
- Implement plans and policies:
 - Vision Zero Action Plan
 - Active Transportation Plan
 - City Council Strategic Plan
 - San Francisco Bay Trail (regional)

Fernside is a Tier 3 High Injury Corridor, All Modes

Existing Speed Limit is 25 mph, but Actual Vehicle Speeds are Higher

Average Speed: 30 mph

85th Percentile Speed: 35 mph

Highest speed recorded: 46 mph

Average Speed: 31 mph

85th Percentile Speed: 35 mph

Highest speed recorded: 44 mph

2

High Crash Rate throughout the Corridor

64

crashes from 2017-2021

(including non-injury crashes)

22 Injury Crashes from 2017-2021

Fernside not in an Equity Priority Area

Highest social vulnerability

High social vulnerability

Moderate social vulnerability

Low social vulnerability

Active Transportation Plan: Low-Stress Bikeway + Ped Improvements

- Adopted plan shows Fernside with a separated bike lane
- Key to the 2030 Low-Stress Backbone Network for all ages and abilities
- Part of regional San Francisco Bay Trail

Fernside is a Key School Access Route

Approximately 30-40 pedestrians cross Fernside near Edison Elementary before and after school

Before and after school, bicycles comprise 10-15% of all traffic on Fernside near Lincoln Middle School

Map of AUSD middle school enrollment areas

Bus Boardings and Alightings

On-Street Parking Less Than 50% Occupied

Winter 2023/2024 Community Engagement Participation

- 600 online survey participants
- 85 community workshop attendees
- 23 virtual community workshop attendees

155 individual map comments, 27 input forms collected

Online Survey

- 600 responses
- November 21 to December 17

Describe your challenges when using Fernside Blvd and desired improvements?

Winter 2023/2024 Community Engagement Summary

- Most common improvements suggested
 - Pedestrian safety (flashing beacons, marked crosswalks)
 - Bicycle facilities (protected, facilitate safe routes to school)
 - Other traffic calming (address illegal vehicle passing, vertical speed elements, intersection improvements)
 - Others: reduce travel lane width, visual enhancements, increased enforcement
- 5-10% of respondents do not desire improvements / are satisfied with existing conditions

Concept Alternatives

Fernside Boulevard Today: West of High St.

- Center vehicle turn lane
- Bike lanes adjacent to vehicle travel lanes
- ~1,000 feet between marked pedestrian crossings
- Flashing beacons at Versailles Ave. and Harvard Dr.

Fernside Boulevard Today: East of High St.

- No center vehicle turn lane
- Buffered bike lanes adjacent to vehicle travel lanes
- Over 2,000 feet between marked crossings at High St. and Garfield Ave.
- Flashing beacons at San Jose Ave.
- Stop control at Garfield Ave. and Central Ave.

Concept Alternatives

Long-Term

- LT1a: One-Way Curb-Protected Bikeways
- LT1b: One-Way Raised Bikeways
- LT2a: Two-Way Curb-Protected Bikeway
- LT2b: Two-Way Raised Bikeway

- NT1: Buffered Bike Lanes
- NT2: One-Way Separated Bikeways
- NT3: Two-Way Separated Bikeway

Pedestrian Crossing Exposure Comparison

Existing Conditions

Transit Accessibility

Existing Conditions

Bus stops against existing curb; non-accessible boarding location

Buses must merge into travel lane

All Long-Term Concepts Include:

- Fully accessible bus boarding islands
- In-lane bus stops

Curb-Protected Concepts: accessible ramp across bikeway to sidewalk

LT1a: One-Way Curb-Protected Bikeways

LT2a: Two-Way Curb-Protected Bikeway

Raised Concepts: level crossing across bikeway to sidewalk (easier access)

LT1b: One-Way Raised Bikeways

LT2b: Two-Way Raised Bikeway

LT1a: One-Way Curb-Protected Bikeways

All Long-Term options include:

- Removal of center turn lane west of High Street, narrower vehicle lanes to reduce speeds
- Reduced crosswalk distance across the path of motor vehicles by over 50%
- Additional curb extensions, marked crosswalks, and flashing beacons

Unique characteristics:

- Bikeways at roadway level, separated from vehicle lanes and located between curbs
- Vehicle parking lanes along new curb
- New narrow buffer strips that can be used as planting strips

LT1a: One-Way Curb-Protected Bikeways

Design Considerations:

- Facilitates simpler bikeway connections to side streets
- Driveway access crosses bikeway on both sides of street
- Utilize space in front of driveways for accessible loading zones
- More complex bikeway connection to existing 2-way bikeway south of Lincoln Middle School
- Removes 35-55% of vehicle parking (*current peak parking occupancy utilizes 41-48% of parking spaces*)

LT1b: One-Way Raised Bikeways

All Long-Term options include:

- Removal of center turn lane west of High Street, narrower vehicle lanes to reduce speeds
- Reduced crosswalk distance across the path of motor vehicles by over 50%
- Additional curb extensions, marked crosswalks, and flashing beacons

Unique characteristics

- Bikeways at sidewalk level, separated from vehicle travel lanes
- Vehicle parking along new curb
- New narrow buffer strips can be used as planting strips or accessible loading zones

LT1b: One-Way Raised Bikeways

Design Considerations:

- Facilitates simpler bikeway connections to side streets
- Driveway access crosses raised bikeway on both sides of street
- Can utilize new curb or space in front of driveways for accessible loading zones
- More complex bikeway connection to existing 2-way bikeway south of Lincoln Middle School
- Removes 20-40% of vehicle parking (*current peak parking occupancy utilizes 41-48% of parking spaces*)

LT2a: Two-Way Curb-Protected Bikeway

All Long-Term options include:

- Removal of center turn lane west of High Street, narrower vehicle lanes to reduce speeds
- Reduced crosswalk distance across the path of motor vehicles by over 50%
- Additional curb extensions, marked crosswalks, and flashing beacons

Unique characteristics

- 2-way bikeway at roadway level, separated from travel lanes, located between curbs on north side of street
- Vehicle parking lanes along new curb on north side of street
- New wider buffer strip can accommodate substantial landscaping, e.g. for planting trees

LT2a: Two-Way Curb-Protected Bikeway

Design Considerations:

- Bicyclists travel contra-flow at intersections
- Straightforward bikeway connection to existing 2-way bikeway south of Lincoln Middle School
- Utilize space in front of driveways for accessible loading zones
- Driveway access crosses bikeway on north side of street
- Removes 15-35% of vehicle parking, mostly from north (*current peak parking occupancy utilizes 41-48%*)

LT2b: Two-Way Raised Bikeway

All Long-Term options include:

- Removal of center turn lane west of High Street, narrower vehicle lanes to reduce speeds
- Reduced crosswalk distance across the path of motor vehicles by over 50%
- Additional curb extensions, marked crosswalks, and flashing beacons

Unique characteristics

- 2-way bikeway at sidewalk level, separated from travel lanes on north side of street
- Vehicle parking lanes along new curb on north side of street
- New wider buffer strip can accommodate substantial landscaping, e.g. for planting trees

LT2b: Two-Way Raised Bikeway

Design Considerations:

- Bicyclists travel contra-flow at intersections
- Straightforward bikeway connection to existing 2-way bikeway south of Lincoln Middle School
- Can utilize new curb or space in front of driveways for accessible loading zones
- Driveway access crosses bikeway on north side of street
- Removes 10-25% of corridor vehicle parking, mostly from north (current peak parking 41-48%)

Long-Term Alternatives Comparison

	LT1a	LT1b	LT2a	LT2b
	One-way		Two-way	
	Curb-protected	Raised	Curb-protected	Raised
Shorter pedestrian crossing distance	✓	\checkmark	✓	✓
Additional marked crosswalks and flashing beacons	√ √	√ ×	✓ \	✓
Vehicle speed reduction measures	√	√	√	✓/
Reduce vehicle illegal passing opportunities	✓	✓ ✓		/ /
Low stress, separated bikeways (alignment with adopted Active Transportation Plan)	•	√ ×	✓	✓
Vehicle parking along the curb	✓	\rightarrow	/	√
Estimated on-street parking removal*	35-55%	20-40%	15-35%	10-25%
Construction Cost	\$\$\$	\$\$\$\$	\$\$\$	\$\$\$\$

^{*}Current peak parking occupancy 41-48%

Concept Alternatives

- Long-Term
 - LT1a: One-Way Curb-Protected Bikeways
 - LT1b: One-Way Raised Bikeways
 - LT2a: Two-Way Curb-Protected Bikeway
 - LT2b: Two-Way Raised Bikeway

- NT1: Buffered Bike Lanes
- NT2: One-Way Separated Bikeways
- NT3: Two-Way Separated Bikeway

Near-Term Pedestrian Crossing Comparison

Existing Conditions

Near-Term Transit Accessibility

Bus stops against existing curb; non-accessible boarding location

Buses must merge into travel lane

Near-Term Concepts:

Bus stop accessibility and transit operations not improved Accessible bus boarding islands

In-lane bus stops to improve transit operations

Bus stop accessibility and transit operations improved on north side only

NT1: Buffered Bike Lanes

Description:

- Center turn lane removed, narrower vehicle travel lanes to reduce speeds
- Additional marked crosswalks (and, if budget allows, additional flashing beacons)
- Striped buffer between the bike lane and vehicle travel lane
- Vehicle parking along existing curb

NT1: Buffered Bike Lanes

Design Considerations:

- Does not provide physical separation between bicycles and vehicles
- Does not prevent illegal vehicle passing in bike lanes
- Utilize existing curb or space in front of driveways for accessible loading zones
- Continues existing buffered bike lanes from east of High Street
- Removes 10-20% of vehicle parking for standard intersection daylighting (current peak parking occupancy utilizes 41-48% of parking spaces)

NT2: One-Way Separated Bikeways

Description:

- Center turn lane removed, narrower vehicle travel lanes to reduce speeds
- Additional marked crosswalks (and, if budget allows, additional flashing beacons)
- Bikeways at roadway level, separated from vehicle travel lanes, between curb and parked vehicles
- Vehicle parking lanes shifted into roadway
- Narrow buffer strip can be used for planter boxes and other visual enhancements as budget allows

NT2: One-Way Separated Bikeways

Design Considerations:

- Provides physical separation between bicycles and vehicles
- Prevents drivers from illegally using the center turn lane or bike lane to pass other drivers
- Utilize parking spaces or space in front of driveways for accessible loading zones
- Straightforward bikeway connection to existing buffered bike lanes east of High Street
- Removes approximately 65-85% of vehicle parking (current peak parking utilizes 41-48% of parking spaces)
- Vehicle parking is not against the curb

NT3: Two-Way Separated Bikeway

Description:

- Center turn lane removed, narrower vehicle travel lanes to reduce speeds
- Additional marked crosswalks (and, if budget allows, additional flashing beacons)
- 2-way bikeway at roadway level, separated from vehicle travel lanes, between curb and parked vehicles
- Vehicle parking lane shifted into roadway on north side of street
- Wide buffer strip can be used for planter boxes and other visual enhancements as budget allows

NT3: Two-Way Separated Bikeway

Design Considerations:

- Provides physical separation between bicycles and vehicles
- Prevents drivers from illegally using the center turn lane or bike lane to pass other drivers
- Utilize parking spaces or space in front of driveways for accessible loading zones on north side; no roadway change on south side
- More complex bikeway connection to existing buffered bike lanes east of High Street
- Removes approximately 40-60% of vehicle parking (current peak parking utilizes 41-48% of parking spaces)
- Vehicle parking is not against the curb on north side of the street

Near-Term Alternatives Comparison

	NT1	NT2	NT3
		Separated Bikeways	
	Buffered Bike Lanes	One-Way	Two-Way
Shorter pedestrian crossing distance		✓	✓
Additional marked crosswalks and flashing beacons	V /	√	√
Vehicle speed reduction measures		/ 🗸	✓
Eliminate vehicle illegal passing opportunities		✓/	√
Low stress, separated bikeways (alignment with adopted bicycle plan network)		✓	✓ ✓
Vehicle parking along the curb	✓ ✓		
Estimated on-street parking removal*	10-20%	65-85%	40-60%
Construction Cost	\$	\$\$	\$\$

^{*}Current peak parking occupancy 41-48%

Next Steps

Project Phases

- Public outreach for existing conditions & initial input: November 2023 -January 2024
- 2. Public outreach for draft concept alternatives: May-June 2024
- 3. Public hearings for final design concept: Fall/Winter 2024 Transportation Commission and City Council public hearings (including seeking City Council approval)
- 4. Resurfacing and restriping on Fernside Blvd west of High St: 2025 or 2026
- 5. Construct full corridor project: 2030 goal timing depends on finding funding

Thoughts?

Feedback?

Additional Slides

Fernside Carries 200 to 500 Vehicles per Hour in Each Direction

Fernside east of Harvard; Average Weekend

Fernside north of Central; Average T-Th

Fernside north of Central; Average Weekend

Vehicles Flow to and from Bridges

Tilden Way cross

Fruitvale Bridge

Over 90% of vehicles entering and exiting Fernside at Otis cross Bay Farm Island Bridge

