Clement Avenue/Tilden Way Project City Council March 7, 2023

100 P. H. 100

Introduction

Clement Avenue Extension Alternatives at Tilden Way

Project Team:

- City of Alameda
- Kittelson & Associates, Inc
- Stakeholder Participants:

City, AC Transit, Alameda Housing Authority, BART, Bike Walk Alameda, County, DABA, Edison School, Bay Trail, BCDC, Bridgeside Shopping Center, City of Oakland, Commission on Persons with Disabilities, Greer Mortuary, Transportation Commission, Unity Council in Oakland, Members of the Public

Engagement and Outreach Update:

- Letter to adjacent properties
- Outreach via social media, emails and sandwich boards
- Website: www.alamedaca.gov/ClementTilden

Alameda Vision Zero Action Plan

November 3, 2021

3

Project Goals and Intended Outcomes

 Prioritize safety
 Improve mobility for all roadway users
 Improve bicycle and pedestrian access
 Provide flood reduction and landscaping opportunities
 Reduce greenhouse gas emissions
 Comply with City plans and policies

Background

- Measure BB grant for \$10 million
- Union Pacific property acquisition
- Environmental clean-up
- Fill gap in active transportation and truck network

Clement Avenue & Tilden Way Existing Routes/Facilities by Mode

Project Timeline

Project webpage: www.alamedaca.gov/ClementTilden

Early 2022	Existing Existing of project of
Spring 2022	Brainstor Gather a stakehol
Late 2022/ Early 2023	Project D Identify a alternativ
2023	Final Des Begin fin preferred
2024	Construct Begin co preferre

Existing Conditions Analysis Existing conditions and project outcomes

Brainstorming Initial Ideas Gather and compile stakeholder input

Project Development Identify and refine preferred alternative

Final Design Begin final design for preferred alternative

Construction Begin construction of preferred alternative

Public Input (2 rounds of outreach)

Virtual Workshop

- 6/18/22: 31 attendees; 21 responses
- **10/11/22:** 32 attendees; 14 responses **In-Person Open Houses**
- 6/19/22: 19 attendees
- **10/12/22:** 15 attendees **Online Surveys**
- 6/19/22: 175 respondents
- **10/2022:** 116 respondents

Desires:

- Safety and slower speeds
- Connectivity for bicyclists
- Safer pedestrian crossings
- More greenery, open space and dog park \bullet Concerns:
- Through traffic and speeding on Clement Ave.
- Increase of truck traffic with extension
- Drivers' unfamiliarity with roundabouts
- Speeding along Pearl St and Fernside Blvd

How satisfied are you with the Clement/Tilden project area?

- High injury corridor and high crash intersection (21 reported injury crashes)
- Pedestrians and bicyclists account for 38%
 of total injury crashes but only 9% of study
 area trips
- Park Street (not pictured) is a Tier 1 high injury corridor

Traffic Operations

Study Area: Cross Alameda Trail

Study Area AC Transit Bus Service

10

Truck Connections

Designated Truck Routes

- Alameda: Park St. Bridge and Miller-Sweeney Bridge
- Oakland: Park St. Bridge, Miller-Sweeney Bridge, and High St. Bridge

Truck Usage

- Trucks east of Broadway are funneled to Miller-Sweeney Bridge
- Trucks west of Broadway use Park Street (heavy truck usage on Park St)

Bridge e, and

ney Bridge usage on

Note: Sharp right turn from Tilden to Broadway is on designated truck route.

Truck Volumes

Truck Travel Patterns

- 4-5x the truck activity on Park Street Bridge compared to Miller-Sweeney Bridge
- Broadway and Park are main N-S corridors
- Central and Otis are primary E-W corridors

10x to 20x

Total Truck Trips (Inbound and Outbound) Northern Alameda County Truck Access Study Source: Streetlight 2020, Kittleson & Associates, I

Source: Caltrans Northern Alameda County Truck Access Study

Figure 26.B

Draft Concept Tilden/Blanding/Fernside Intersection

Draft Concept Broadway/Tilden Intersection

AVOID IMPACTING TREES, IF POSSIBLE

REMOVE RAIL PLATFORM

RAISED CROSSWALK

ALAMEDA HOUSING AUTHORITY FUTURE HOUSING DEVELOPMENT

Overall Evaluation

Project Intended Outcome	Benefits
• Safety	 Improvements for Reduce speeds Adding sidewalks Restricting high-co Reduced volume Reduces truck vo Trucks connecting
 Improve mobility for all roadway users Improve bicycle and pedestrian access Reduce greenhouse gas emissions 	 Improved biking/ Improved bus acc Direct truck and r Improved walking
 Flood Reduction/Landscaping 	 New stormwater g
 Comply with City plans and policies 	Completes GenerExtends Cross Ala

or all modes at roundabout and Broadway/Tilden

- s and crossings
- conflict movements
- e at Broadway/Blanding
- olumes along Park Street (High Injury corridor)
- ng to Clement extension do not cross over CAT

/walking connections

- cess
- motor vehicle access to Clement
- g and biking conditions encourages mode shift

gardens and bioretention areas

eral Plan truck network ameda Trail

Next Steps

- o 2023: Design
- o 2024: Construction
- o 2025: Complete
- Project webpage:
 <u>www.alamedaca.gov/ClementTilden</u>

Gail Payne Senior Transportation Coordinator <u>gpayne@alamedaca.gov</u> or 510-747-6892

2022 Volumes with COVID adjustment Existing / Project Delay Comparison

39s **(29s)**

(16s **(11s)**

NSIDE

Average Travel Time Delays Without Project (With Project)

FRUITVALE AVE

s = seconds of average delay

Anticipated queue lengths, Weekday PM Peak Hour Broadway/Tilden Tilden/Fruitvale/Fernside/Blandin

Legend

2022, No Adjustment

Anticipated queue lengths, Weekday PM Peak Hour **Broadway/Tilden**

Fruitvale Ave Tilden Way

*2022 volumes were adjusted to approximate pre-pandemic levels by increasing volumes to and from Alameda by 20%

Fernside Blvr

2022, Adjusted*

Emergency/Evacuation Scenarios

Unmanaged scenario

- Lose some capacity (2 lanes to 1) for about 1/3 mile
- Fruitvale Avenue in Oakland becomes bottleneck (2 lanes to 1)

Managed Scenario

- Can run the roundabout eastbound only ("contraflow")
- Can use one of the two multi-use paths for emergency vehicles
- Maintains two lanes outbound
- Lose capacity for 1/3 mile to Fruitvale Avenue in Oakland

Conceptual Managed Scenario

Lane Reduction

Reduce number of travel lanes (commonly called "Road Diet")

- Lower speeds
- 19 47% crash reduction (right-angle, turning, rear end crashes)
- Shorter pedestrian crossings

Source: FHWA

Design Details

Raised Crosswalks

- Design can be adapted to roundabouts
- Compatible with large vehicles
- Research and design guidance informs the design

Safety Performance

Safety Statistics

- 90-100% reduction in fatalities
- 75% reduction in injuries
- 35% reduction in total crashes
- Lack of pedestrian and bicyclist crash frequency
- Reduction in conflict number and speeds

Source: NCHRP Report 572, NCHRP Report 672

Roundabouts and Pedestrians

- Benefits:
 - Slow vehicle speeds
 - Two-stage crossing
- Considerations:
 - Crosswalk alignment
 - Width of splitter island
 - Space for exiting vehicles to yield to pedestrians
 - Yield-controlled crossings

Sources: Google Earth; Kittelson

Why Build Roundabouts?

Roundabout benefits include:

- Safety performance
- Lower delay
- Environmental benefits (emissions, fuel savings)
- Access management
- Operations and maintenance costs
- Aesthetics

Vehicle Speeds: Reduced

- Geometry controls speeds
 - -Max entry speed:
 - 25 mph for single-lane
 - 30 mph for two-lane
 - -Circulating speeds 10 to 12mph
- Increased time for driver reaction
- Decreased chance for injury or fatality

Roundabouts and Accessibility

Considerations for Visually Impaired:

- 1. Well defined walkway edges
- 2. Separated walkways
- 3. Aligned detectable warnings
- 4. Perpendicular crossings
- 5. Contrasting crosswalk markings

Performance assessment detailed in NCHRP Report 834

Separate Bike/Ped Options

MUTCD W11-15

MUTCD W16-7P

(2)

1

(5)

4.3.4 ROUNDABOUT DESIGN WITH SEPARATED BIKE LANES

When protected bike lanes are provided at roundabouts, they should be continuous around the intersection, parallel to the sidewalk (see EXHIBIT 4S). Protected bike lanes should generally follow the contour of the circular intersection.

The design of the street crossings should include the following features (see EXHIBIT 4T):

- The bicycle crossing should be immediately adjacent to and parallel with the pedestrian crossing, and both should be at the same elevation.
- Consider providing supplemental yield markings at roundabout exits to indicate priority at these crossings.
- · Bicycle stop lines should be placed near the edge of the crossing roadway.
- The separated bike lane approach to the bicycle crossing should result in bicyclists arriving at the queuing area at a perpendicular angle to approaching motorists.

- Curb radius should be a minimum of 5 ft. to enable bicyclists to turn into the queuing area.
- Channelizing islands are preferred to maintain separation between bicyclists and pedestrians, but may be eliminated if different surface materials are used. 6

At crossing locations of multi-lane roundabouts or roundabouts where the exit geometry will result in faster exiting speeds by motorists (thus reducing the likelihood that they will yield to bicyclists and pedestrians), additional measures should be considered to induce yielding such as providing an actuated device such as a Rapid Flashing Beacon or Pedestrian Hybrid Beacon.

EXHIBIT 4S: Design for Roundabout with Separated Bike Lanes

Source: Massachusetts DOT Separated Bike Lane Planning and Design Guide

76

San Luis Obispo, California Source: Brian Ray

Roundabouts and Large Vehicles

- "Design" versus "accommodate" larger vehicles
- Accommodations include:
 - Truck aprons
 - Placement of landscaping
 - Reinforced curbs

Reduced Travel Delay Comparative Delay, Signal versus Roundabout

- May solve existing or projected operational problem
 - Heavy delay on minor road
 - Large traffic signal delays
 - Heavy left-turning traffic
 - Stop control with large delays

Intersection that meets Signal Warrants

Source: NCHRP Report 672, NCHRP Exhibit 3-19

Truck Volumes

Miller-Sweeney Bridge 2022 Truck Volumes

- Trucks account for 2 5% of daily traffic on Fruitvale Avenue to/from Oakland
- Balanced truck volumes to/from Oakland all day
- Higher truck volumes on Blanding than Clement
- The project should continue to provide truck access to/from Nob Hill shopping center.
- Trips to Oakland appear to be served better by Park Street Bridge

All-day Counts, Trucks with Trailers (December 2022)

Miller-Sweeney Bridge

Bridge Events

- Average 34 times a month (1-2 times/day)
- Typical 5-10 minute event (depends on vessel)
- Typically avoid AM and PM peak hours
- Similar to a rail crossing

Vehicle queues during bridge events (2022)

Dealing with future volumes

Managed Scenario

- The roundabout shows to be below capacity even with conservative adjustments.
- If future volumes grow, a roundabout can be metered to manage delays and queues.
- Example shown from Columbia Park Trail, Richland, Washington

