

Central Avenue Complete Street Concept Proposal

Transportation Commission | May 27, 2015

Project Team

City of Alameda Staff

Gail Payne, Public Works Transportation Coordinator

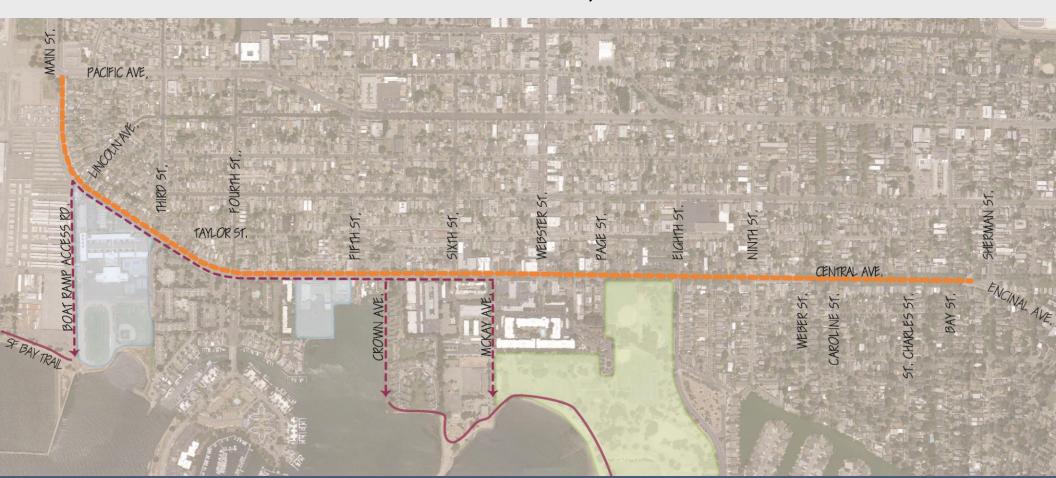
PlaceWorks

- Sarah Sutton, Principal-in-Charge, Landscape Architect
- Melissa Erikson, Senior Associate, Landscape Architect
- Christine Wilson, Project Landscape Designer

Kittelson & Associates

- Alice Chen, Principal Planner
- Laurence Lewis, Associate Transportation Planner
- Amy Lopez, Transportation Analyst

Bike Walk Alameda


Agenda

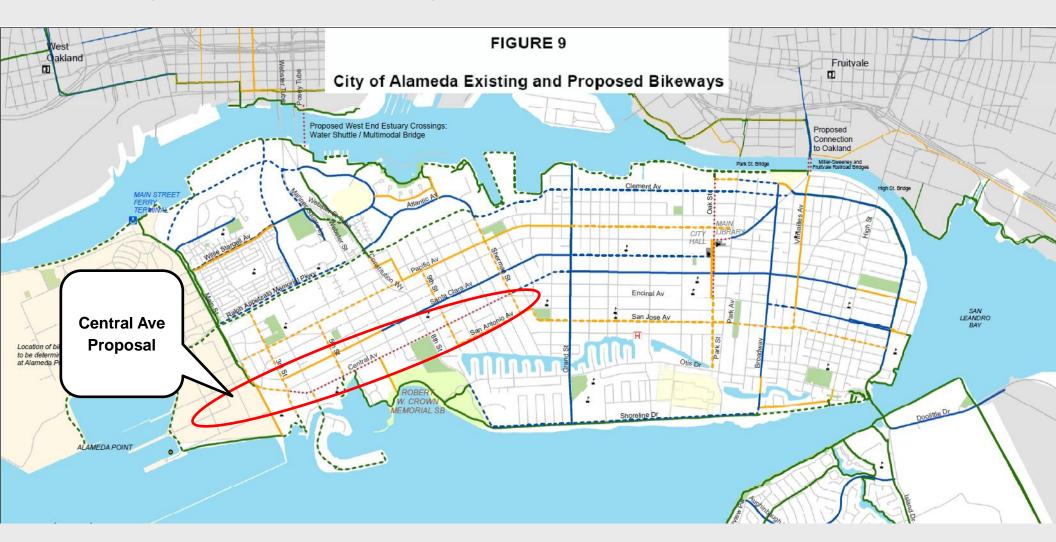
- Project Overview
- Traffic Analysis
- Approaches
- Corridor Recommendations
- Next Steps

Project Overview

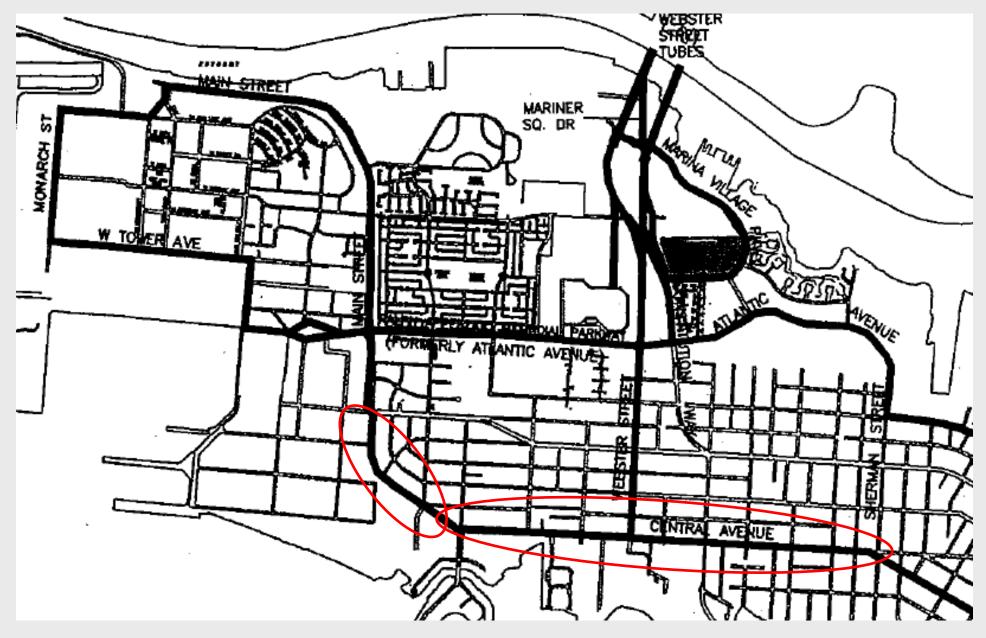
- School, transit, truck and neighborhood access
- Two five-legged intersections (Third/Taylor and Sherman/Encinal)
- Bikeway treatments
- Potential reduction of travel lanes, a "road diet"

Project Overview: Schools

- Schools West Alameda (approx. 4,500 students)
 - Academy of Alameda Middle School
 - Alameda Community Learning Center
 - Alameda Science and Technology Institute
 - Encinal High School
 - Junior Jets Middle School
 - Nea
 - Paden Elementary School
 - Ruby Bridges Elementary School


Project Overview (cont.)

- General Plan Transportation Element
 - Goals
 - Circulation
 - Livability
 - Transportation Choice
 - Implementation
 - Street Classifications
 - Truck Route
 - Transit Priority Street
 - Bicycle Priority Street



Project Overview (cont.)

City of Alameda Bicycle Plan (2010)

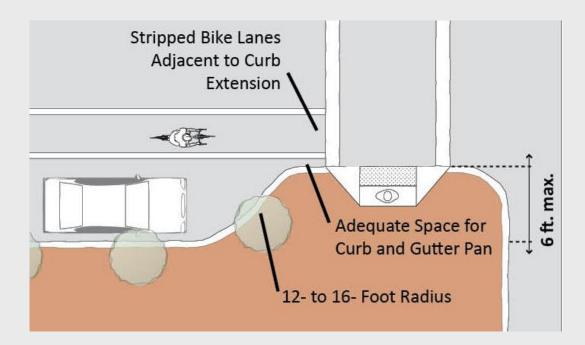
Project Overview: Truck Route Map

Project Goals

- 1. Safety
- 2. Encourage bicycling and walking
- 3. Traffic calming
- 4. Minimize disruption to motorists
- 5. Improve the streetscape
- 6. Encourage transit use
- 7. Improve public access to the SF Bay
- 8. Revitalize West Alameda
- 9. Improve truck access

Based on community input

Project Concept Components


- Pedestrian crossings
- Bikeway
- Road diet
- Accessibility
- Streetscape (e.g., gateway, trees)
- Utilities: storm, sewer and undergrounding
- Pavement resurfacing
- Truck and bus access

Pedestrian Improvements

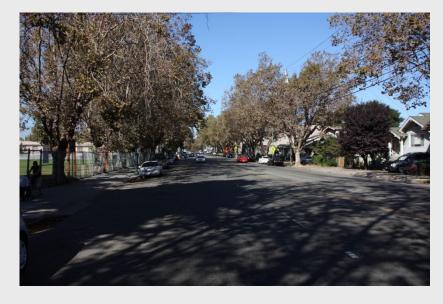
Considering:

- Curb bulb-outs:
 - Shortens crossing distances
 - Helps reduce speeds

Pedestrian Improvements (cont.)

Considering:

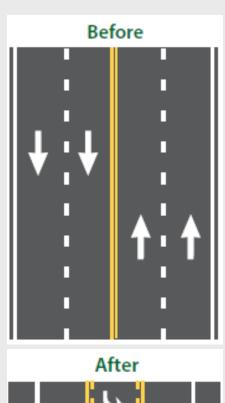
- Ladder crosswalks and
- Rectangular rapid flash beacons
- = Increases visibility of pedestrians

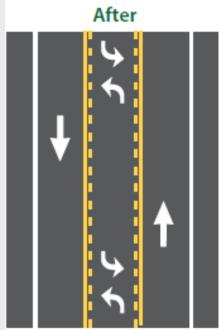


Streetscape Improvements

Street Trees

- Provide shade and beautify the streetscape
- Identify short-, medium-, and long-term goals for overall tree health and longevity
- Identify areas for new trees





Road Diet Benefits

According to FHWA:

- Decrease vehicle lanes for pedestrians to cross
- Allow better visibility of pedestrians
- Improve circulation for bicyclists
- Reduce collisions by 19% to 47% with a center left-turn lane
- Reduce speeds by 3 to 5 miles per hour
- Reduce severity of collisions
- Improve travel flow


Road Diet Guidelines

FHWA identifies volumes below 20,000/day as feasible

Street Name	Veh/Day
Atlantic Ave. (Buena Vista to Constitution)	10,956
Broadway (Santa Clara Ave to Otis Dr)	10,552
Fernside Blvd. (Tilden Way to High St)	8,550
Central Avenue	9,327
Central Avenue: FUTURE (average)	12,000
Central Avenue: FUTURE (max.)	16,000

Traffic Analysis

- Based on 2015 counts
- High-level analysis to inform number of lanes
- Key intersections with signal or stop sign
- Highest traffic volumes

Traffic Analysis (cont.)

- With existing conditions (4 lanes), all intersections currently operate below capacity
- With 3-lane road diet, there are two capacity constraints
 - Webster/Central intersection delays on Webster southbound
 - Eighth/Central intersection delays on Central westbound
- With 2-lane road diet, there are no additional capacity constraints
 - Webster/Central and Eighth/Central both experience greater delays

Traffic Analysis (cont.) End-to-End Travel Time Comparison:

Current Year

Time Period / Direction	Existing Conditions	3-Lane Road Diet	2-Lane Road Diet
Weekday AM Peak (7-9 AM)			
Eastbound	6.9 min.	7.6 min.	11.7 min.
Westbound	6.8 min.	15.2 min	16.8 min.
Weekday PM Peak (4-6 PM)			
Eastbound	6.5 min.	10.8 min.	17.4 min.
Westbound	7.0 min.	8.6 min.	14.1 min.

Notes:

- 1. Travel times do not include delays due to mid-block parking maneuvers and left-turn movements.
- 2. Travel times do not account for diversion to alternate routes during congested conditions.

Traffic Analysis (cont.)

- Traffic volumes include cumulative build-out
- With existing conditions (4 lanes), there is one capacity constraint
 - Webster/Central intersection delays on Webster southbound
- With 3-lane road diet, there are three capacity constraints
 - Fifth/Central intersection delays at all-way STOP
 - Webster/Central intersection
 - Eighth/Central intersection
- With 2-lane road diet, there are additional capacity constraints at Sherman
 - Delays for eastbound approach

Traffic Analysis (cont.) End-to-End Travel Time Comparison:

Year
2035
Conditions

Time Period / Direction	Existing Conditions	3-Lane Road Diet	2-Lane Road Diet
Weekday AM Peak (7-9 AM)			
Eastbound	8.4 min.	9.4 min.	17.1 min.
Westbound	8.9 min.	22.4 min.	27.2 min.
Weekday PM Peak (4-6 PM)			
Eastbound	9.1 min.	20.0 min.	48.1 min.
Westbound	10.7 min.	14.5 min.	27.1 min.

Notes:

- 1. Travel times do not include delays due to mid-block parking maneuvers and left-turn movements.
- 2. Travel times do not account for diversion to alternate routes during congested conditions.

Traffic Analysis (cont.)

Driveway Counts:

	North/East	South/West	Total
Pacific/Main to Lincoln	14	1	15
Lincoln to Third/Taylor	12	4	16
Third/Taylor to Fourth	9	1	10
Fourth to Sherman/Encinal	86	70	156
Total	121	76	197

Bikeway Approaches

Within the roadway, between the curbs:

- A. Do Nothing
- B. Sharrow Markings (Class III Bike Route)
- C. Class II Bike Lanes
- D. Buffered Bike Lanes
- E. One-Way Cycle Track (Protected Bike Lanes)
- F. Two-Way Curbside Cycle Track
- G. Two-Way Median Cycle Track

Option A: Do Nothing


Option B: Class III Bike Route

Pros:

Indicates space in right-of-way for bicyclists

Cons:

- No separation between bicycles and motor vehicles
- Bicycle speed can slow motor vehicles in shared lane

Source: NACTO Urban Bikeway Design Guide

Source: Bike Arlington, Bicycle Facilities (www.bikearlingtoncom)

Option B: Class III Bike Route

Option C: Class II Bike Lanes

Pros:

- Provides dedicated lane for bicyclists
- Allows for a center two-way left-turn lane

Cons:

- Removes one motor vehicle travel lane on Central Avenue
- No buffer between moving traffic, or from parked cars

Class II - On-Street Bicycle Lane

Source: NACTO Urban Bikeway Design Guide

Option C: Class II Bike Lanes

Option D: Buffered Bike Lanes

Pros:

Provides buffered space for bicyclists

Cons:

- Removes two motor vehicle travel lanes on Central Avenue
- Prevents a center two-way leftturn lane

Option D: Buffered Bike Lanes

Option E: One-Way Cycle Track (Protected Bike Lanes)

- Pros:
 - Creates a physical barrier between bikes and traffic
- Cons:
 - Removes two motor vehicle travel lanes
 - Prevents a center two-way left-turn lane
 - Conflicts with driveways
 - Prevents disabled parking spaces

Source: Active Transportation Alliance (https://activetrans.org)

Option E: One-Way Cycle Track (Protected Bike Lanes)

Option F: Two-Way Cycle Track

- Pros:
 - Creates a physical barrier between bikes and traffic
- Cons:
 - Removes two motor vehicle travel lanes
 - Prevents a center two-way left-turn lane
 - Conflicts with driveways
 - Prevents disabled parking spaces

Option F: Two-Way Cycle Track

Option G: Median Cycle Track

Pros:

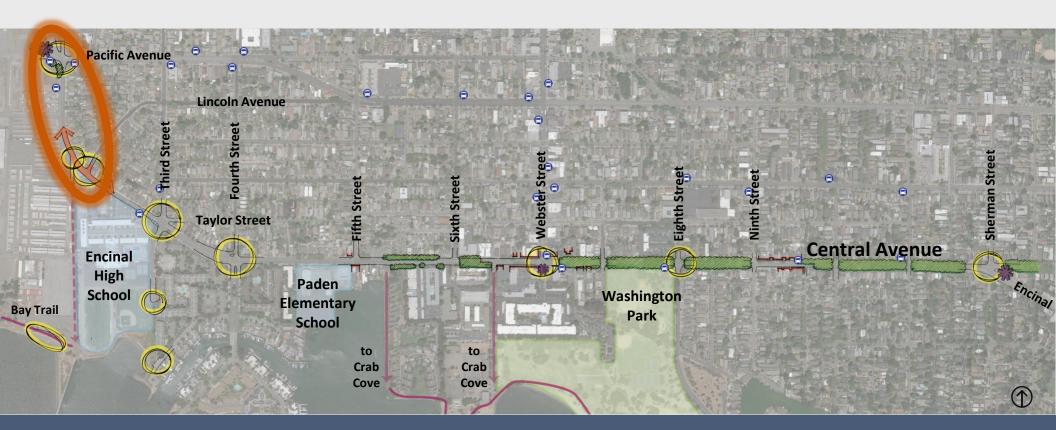
- Avoids driveway conflicts
- Creates a separation between bicyclists and motorists

Cons:

- Removes two motor vehicle travel lanes
- Prevents a center two-way leftturn lane
- Requires separate signal phases for turning movements
- Causes excessive intersection delays

Pennsylvania Avenue, Washington, DC

Option G: Median Cycle Track



- Pacific/Main to Boat Ramp Access (Alameda Point)
- Boat Ramp Access to Third/Taylor (EHS)

- 3. Third/Taylor to Fourth
- 4. Fourth to Sherman/Encinal

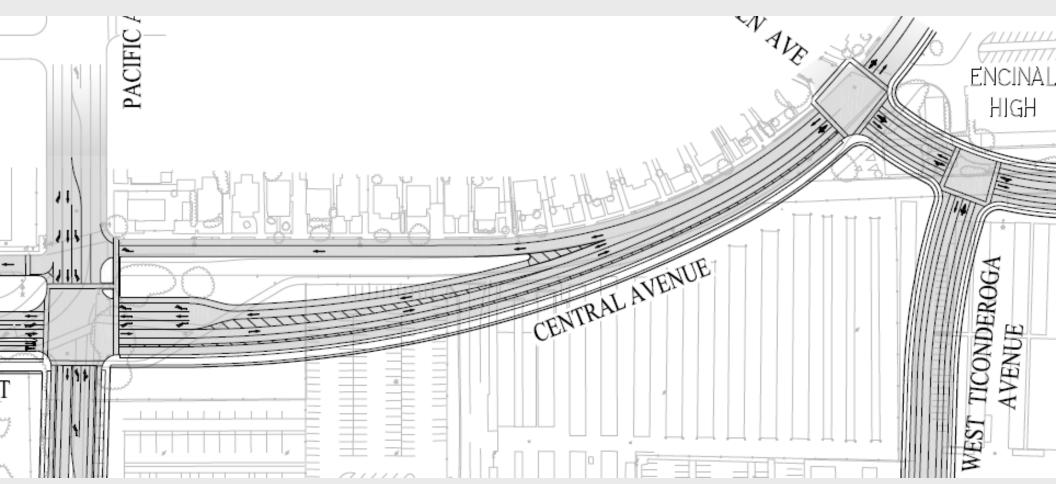
Previous Planning Efforts

Alameda Point Master Infrastructure Plan (2014)

Central Avenue Complete Street Concept Proposal

1. Alameda Point Master Infrastructure Plan

Pacific/Main to Lincoln:


- Shifts street towards
 Alameda Point
- Removes offset
- Provides on-street parking on both sides
- Installs bikeway

1. Alameda Point

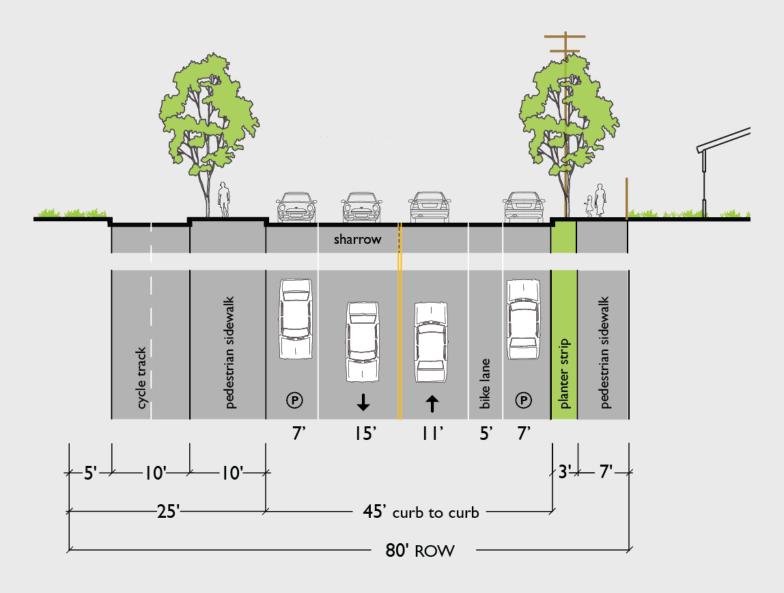
Master Infrastructure Plan


Preliminary Concept for Pacific/Main to Lincoln

Source: Alameda Point Master Infrastructure Plan (2014)

1. Pacific/Main to Lincoln

- Preliminary Concept: Cycle Track
 - + Class 2 Bike Lanes
- = Fernside Blvd. model



Corridor Segments MAIN ST. PACIFIC AVE. TAYLOR ST.

- Pacific/Main to Boat Ramp Access (Alameda Point)
- Boat Ramp Access to Third/Taylor (EHS)

- 3. Third/Taylor to Fourth
- 4. Fourth to Sherman/Encinal

Corridor Segments: 2. Boat Ramp Access Road to Third/Taylor

proposed right-of-way realignment

Previous Planning Efforts

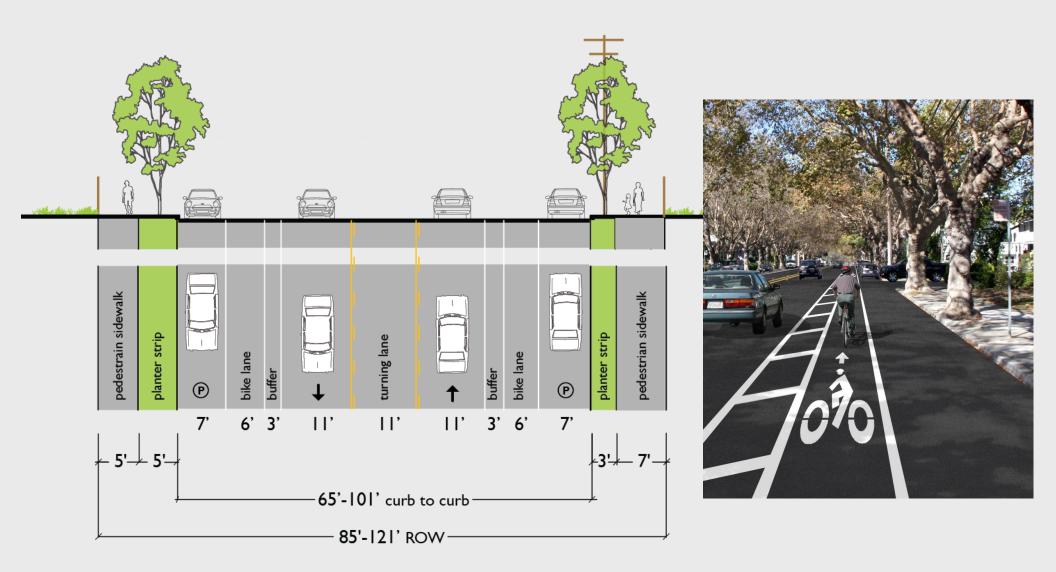
Third/Taylor Intersection Improvements (2013)

Central Avenue Complete Street Concept Proposal

Third/Taylor

Intersection Improvements

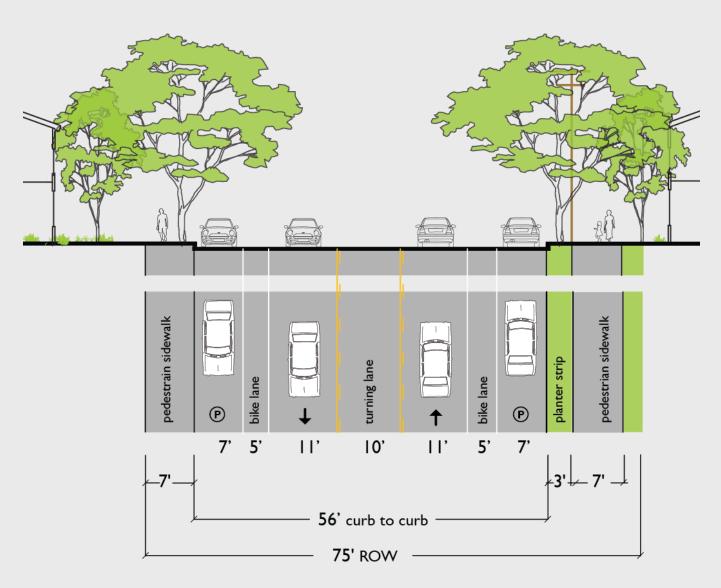
- City conducted outreach in 2013
- Installed curb extension on south side
- Little support for restricting movements to and from Taylor
- Traffic signal?



- Pacific/Main to Boat Ramp Access (Alameda Point)
- Boat Ramp Access to Third/Taylor (EHS)

- 3. Third/Taylor to Fourth
- 4. Fourth to Sherman/Encinal

Corridor Segments: 3. Third/Taylor to Fourth



Corridor Segments MAIN ST. PACIFIC AVE. TAYLOR ST. BOAT RAMP A

- Pacific/Main to Boat Ramp Access (Alameda Point)
- Boat Ramp Access to Third/Taylor (EHS)

- 3. Third/Taylor to Fourth
- 4. Fourth to Sherman/Encinal

Corridor Segments: 4. Fourth to Sherman/Encinal

proposed curb-to-curb realignment

Central Avenue Complete Street Concept Proposal

Option C: Class II Bike Lanes

Project Concept Components

- Pedestrian crossings
- Bikeway
- Road diet
- Accessibility
- Streetscape (e.g., gateway, trees)
- Utilities: storm, sewer and undergrounding
- Pavement resurfacing
- Truck and bus access

Next Steps

- Community Meeting #2: Concept Options
- Open Forum: http://alamedaca.gov/public-works/open-forum
- Community Meeting #3: Preferred Concept,
 September 17
- Transportation Commission:
 November 18

Comments or Questions?

- Open forum: http://alamedaca.gov/public-works/open-forum
- Contact: Gail Payne at 510-747-7948 or gpayne@alamedaca.gov
- Project web page:

http://alamedaca.gov/public-works/central-avenue-complete-street

Central Avenue Complete Street Concept Proposal

Transportation Commission | May 27, 2015